Molecular mechanisms of dendritic spine morphogenesis.

نویسندگان

  • Tomoko Tada
  • Morgan Sheng
چکیده

Excitatory synapses are formed on dendritic spines, postsynaptic structures that change during development and in response to synaptic activity. Once mature, however, spines can remain stable for many months. The molecular mechanisms that control the formation and elimination, motility and stability, and size and shape of dendritic spines are being revealed. Multiple signaling pathways, particularly those involving Rho and Ras family small GTPases, converge on the actin cytoskeleton to regulate spine morphology and dynamics bidirectionally. Numerous cell surface receptors, scaffold proteins and actin binding proteins are concentrated in spines and engaged in spine morphogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DSCR1 interacts with FMRP and is required for spine morphogenesis and local protein synthesis.

Most common genetic factors known to cause intellectual disability are Down syndrome and Fragile X syndrome. However, the underlying cellular and molecular mechanisms of intellectual disability remain unclear. Recently, dendritic spine dysmorphogenesis and impaired local protein synthesis are posited to contribute to the cellular mechanisms of intellectual disability. Here, we show that Down sy...

متن کامل

Dendritic spine dynamics--a key role for kalirin-7.

Changes in the structure and function of dendritic spines contribute to numerous physiological processes such as synaptic transmission and plasticity, as well as behavior, including learning and memory. Moreover, altered dendritic spine morphogenesis and plasticity is an endophenotype of many neurodevelopmental and neuropsychiatric disorders. Hence, the molecular mechanisms that control spine p...

متن کامل

NESH Regulates Dendritic Spine Morphology and Synapse Formation

BACKGROUND Dendritic spines are small membranous protrusions on the neuronal dendrites that receive synaptic input from axon terminals. Despite their importance for integrating the enormous information flow in the brain, the molecular mechanisms regulating spine morphogenesis are not well understood. NESH/Abi-3 is a member of the Abl interactor (Abi) protein family, and its overexpression is kn...

متن کامل

Molecular Architecture of Synaptic Actin Cytoskeleton in Hippocampal Neurons Reveals a Mechanism of Dendritic Spine Morphogenesis

Excitatory synapses in the brain play key roles in learning and memory. The formation and functions of postsynaptic mushroom-shaped structures, dendritic spines, and possibly of presynaptic terminals, rely on actin cytoskeleton remodeling. However, the cytoskeletal architecture of synapses remains unknown hindering the understanding of synapse morphogenesis. Using platinum replica electron micr...

متن کامل

Drebrin-dependent actin clustering in dendritic filopodia governs synaptic targeting of postsynaptic density-95 and dendritic spine morphogenesis.

Dendritic spines have two major structural elements: postsynaptic densities (PSDs) and actin cytoskeletons. PSD proteins are proposed to regulate spine morphogenesis. However, other molecular mechanisms should govern spine morphogenesis, because the initiation of spine morphogenesis precedes the synaptic clustering of these proteins. Here, we show that synaptic clustering of drebrin, an actin-b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current opinion in neurobiology

دوره 16 1  شماره 

صفحات  -

تاریخ انتشار 2006